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Introduction: Dopants Y and Zr at the level of 100 to 1000 ppm have been found to enhance alumina creep 

resistance at high temperatures by two orders of magnitude.1, 2 We have used EXAFS3, 4 to investigate grain 
boundary segregation of Y in α-Al2O3 and evolution of the structural environment around the Y atoms. The dopant 
segregation in these samples had also been characterized by high resolution scanning transmission electron 
microscopy. 

Methods and Materials: The materials were ultra high purity α-Al2O3 doped with Y2O3 at two levels, 100 ppm 
and 1000 ppm (Y/Al atomic ratio, and the specimens are referred as 100Y and 1000Y). Annealing at 1475°C for 
times ranging from 15 to 50 h was used to obtain samples with different grain sizes, and therefore different 
amounts of dopant grain boundary segregation. Y-coated α-Al2O3 particles were prepared by sol-gel processing 
using Boehmite sol and Y-acetylacetonate precursors. Y K-edge EXAFS measurements were made with 
fluorescence detection. Transmission absorption measurements were made for Y2O3 powder and fluorescence 
measurements were made for polycrystalline YAG as standards. 

Results: Parameters obtained by fitting EXAFS spectra are shown below for different grain boundary 
concentrations and for Y on the  α-Al2O3 particle surface: 

  
Fitting results for the Y-O shell  

 Y concentration R (Å): N σ2(Å2): 

Dilute (I) 2.30 ± 0.01 4.2 ± 0.5 0.009 ± 0.001 

Super. Sat. (II) 2.30 ± 0.01 5.0 ± 0.5 0.01 ± 0.001 

 

Grain Boundary 

Equi. YAG (III) 2.36 ± 0.01 7.5 ± 0.7 0.008 ± 0.0008 

Particle Surface 2.33 ± 0.01 4.8 ± 0.5 0.008 ± 0.0005 
 

Fitting results for the Y-Al shell  
 Y concentration R (Å): N σ2(Å2): 

Grain Boundary Super. Sat. (II) 3.31 ± 0.01 1.3 ± 0.5 0.001 ± 0.0005 

Particle Surface 3.31 ± 0.01 1.2 ± 0.5  0.002 ± 0.0005 

 
Conclusions: The incorporation of Y atoms by α-Al2O3 grain boundaries, on average, is characterized by 

three composition regimes: (I) dilute to saturated; (II) supersaturated. The average Y grain boundary 
concentration in equilibrium with YAG precipitates has been determined to be ~ ¼ equivalent monolayer, and the 
maximum supersaturation concentration has been determined to be ~ ½ equivalent monolayer. EXAFS reveals 
that accompanying the supersaturation of grain boundaries with Y is an increasing Y-O nearest neighbor 
coordination number and, simultaneously, a significantly increased degree of ordering of Y with respect to Al ions 
beyond nearest neighbor O. This Y-Al distance is the same as that for Y absorbed on the free surface of α-Al2O3, 
and the same as that expected for the Y-Al distance when Y substitutes for Al with the Y-O distance relaxed to 
that in Y2O3. This compositional and structural information has led to a clear picture on how the grain boundary 
segregated Y concentration influences grain boundary structure. For dilute Y concentrations, Y ions preferentially 
fill sites in the grain boundary core which have well defined order only within the nearest neighbor shell of 
oxygens. As the Y concentration increases, Y begins to occupy near-boundary sites, forming two near-boundary 
layers each is adjacent to a grain surface. The near-boundary layer has nearest neighbor ordering extending at 
least to nearest neighbor cations. Nucleation of the YAG phase leads to the depletion of Y from these two partially 
ordered layers. 
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